If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-20x+100=8
We move all terms to the left:
x^2-20x+100-(8)=0
We add all the numbers together, and all the variables
x^2-20x+92=0
a = 1; b = -20; c = +92;
Δ = b2-4ac
Δ = -202-4·1·92
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{2}}{2*1}=\frac{20-4\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{2}}{2*1}=\frac{20+4\sqrt{2}}{2} $
| 2^x+3*2*2^x=28 | | z^2-3z=22.75 | | 12g=12(1.5g−1)+11 | | 0=4.9x^2-10x+70 | | 63x^2+100x+32=0 | | x/2+16=2 | | b^2-5b= | | 4m=3m=+3 | | 0=4.9x^2-9.8x+70 | | x/4+6=22 | | 2c-5-9c+4=8c+5 | | -(5y+2)-(4y-3)=-4 | | 7+x=13+4 | | 5(6-3b)=6(9-2b) | | 2x=x50 | | x/5+23=34 | | 7a+3=2a-5 | | 20x2+11x-3=0 | | 27/10=3/4n | | K=1/2x57^2 | | 9747=1/2m(57^2) | | 6b−2b+1=5b+2−b | | 650+88*m=112*m | | x/7+7=21 | | 23+3x=56 | | 4x−2+x=−2+2x | | 4(3x-5)=3(5x-9) | | x^2-23x+132= | | 3f=36 | | 1/4(12m+8)=5m+6 | | 2^3x=0.25 | | (x+2)/7=12 |